成人午夜在线观看_成人午夜网址_色综合影院在线_麻豆一区二区三

  • 技術文章ARTICLE

    您當前的位置:首頁 > 技術文章 > 應用LIBS技術對鈾礦石進行元素分布測量(Mapping)和伴生分析

    應用LIBS技術對鈾礦石進行元素分布測量(Mapping)和伴生分析

    發布時間: 2018-12-24  點擊次數: 5977次

      

        礦物巖石的研究中,傳統的地學分析儀器對于貧礦石元素檢測較為困難:例如光學顯微鏡、電子探針、電子掃描顯微鏡、LIF或XRF技術等。主要原因是礦物中的金屬相較小(μm),或者其中的膠態組分中元素難以檢測,或者二者兼有;并且要經過相當復雜的預處理。此外,這些傳統地學分析儀器不能進行原位測量或者非接觸式測量。

        本例中的砂巖型鈾礦主要成分是石英、粘土基質及輔助礦物(如氧化物、硫化物或碳酸鹽);其成礦作用是成礦液體侵入晶裂空隙或者與石英砂間的黏土基質反應的結果。對其中的U元素進行分析,困難在于:

    § 元素分布很不均勻,有價值的信息經常隱藏于樣品某一小區域內;

    § 礦石中的U、Zr、Ti、Nb呈不規律的伴生或者隔離分布,難以檢測到有效信息,但是其伴生分布信息對于礦業科學來說非常關鍵;

    § 顆粒體積(μm)小;

    § 一些金屬相為膠態。

        而LIBS元素分析技術,是當前克服上述困難為有效的、滿足實驗需求并且具有應用前景的技術。此外,無須樣品預處理、實驗方法快速簡便,可以同時檢測元素周期表中所有元素,靈敏度高,可以對元素的樣品表面空間分布做Mapping---都是傳統方法*的優勢。

        事實上,LIBS技術在地學中的應用正在突飛猛進的發展,例如人們已經將其應用至礦石污染物或者雜質的分析,原位定性、定量分析,礦石產地分析,甚至在火星科學實驗室“好奇號”漫游者早已將LIBS技術應用于火星巖石7 m遠距離分析。

    鈾礦檢測的常規辦法及其檢測能力一覽

    分析方法

    非接觸測量

    元素掃描 mapping

    ICP-MS

    ICP-AES

    XRF

    Raman 光譜分析

    LIF

    Gamma 射線光譜分析

    LIBS

    AtomTrace 團隊SciTrace 地學應用發表文獻

    • 1. ?elko, L. ; Gadas, P. ; Häkkänen, H. ; Hrdli?ka, A. ; Kaiser, J. ; Kaski, S. ; Modlitbová, P. ; Novotný, J. ; Novotný, K. ; Prochazka, D. ; Sládková, L. Detection of fluorine using laser-induced breakdown spectroscopy and Raman spectroscopy, [J] Journal of Analytical Atomic Spectrometry (2017), DOI: 10.1039/C7JA00200A
    • 2. Hrdli?ka, A. ; Kaiser, J. ; Klus, J. ; Novotný, J. ; Novotný, K. ; Prochazka, D. ; Škarková, P. ; Vrábel, J. Impact of Laser-Induced Breakdown Spectroscopy data normalization on m*riate classification accuracy,. [J] Journal of Analytical Atomic Spectrometry (2017), DOI: 10.1039/C6JA00322B
    • 3. Jakub Klus, Petr Mikysekd, David Prochazka, Pavel Po?ízka, Petra Prochazková, Jan Novotný,Tomáš Trojek, Karel Novotný, Marek Slobodník, Jozef Kaiser., Application of self-organizing maps to the study of U-Zr-Ti-Nb distribution in sandstone-hosted uranium ores, [J] Spectrochimica Acta Part B 131 (2016) 66–73
    • 4. Burget, R. ; Kaiser, J. ; Klus, J. ; Mašek, J. ; Modlitbová, P. ; Novotný, J. ; Novotný, K. ; Prochazka, D. ; Rajnoha, M., M*riate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis, [J] Scientific Reports (2017), DOI: 10.1038/s41598-017-03426-0
    • 5. Brada, M. ; Kaiser, J. ; Klus, J. ; Novotný, J. ; Novotný, K. ; Prochazka, D. ; Vítková, G. ,  Assessment of the most effective part of echelle laser-induced plasma spectra for further classification using Czerny-Turner spectrometer, [J] Spectrochimica Acta Part B: Atomic Spectroscopy (2016), DOI: 10.1016/j.sab.2016.09.004
    • 6. Jakub Klus, Petr Mikysekd, David Prochazka, Pavel Po?ízka, Petra Prochazková, Jan NovotnýTomáš Trojek, Karel Novotný, Marek Slobodník, Jozef Kaiser, M*riate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse laser-induced breakdown spectroscopy, [J] Spectrochimica Acta Part B: Atomic Spectroscopy (2016) 143–149, DOI: 10.1016/j.sab.2016.08.014

        盡管LIBS元素分析技術的優勢確定無疑,但對于一些特定樣品特定元素的檢測仍存在挑戰。本案例中,AtomTrace團隊應用SciTrace LIBS系統*的雙激發、反應室氣壓控制、系統控制和數據分析處理LIBS技術,對砂巖型鈾礦進行元素高分辨率Mapping分析,突破如下:

    § 通過雙激發的特殊方式,大大提高LIBS分析的穩定性、可重復性,同時減小燒蝕坑的直徑從而提高Mapping分辨率;

    § 砂巖型鈾礦LIBS分析譜線中,鈾元素特征譜線非常復雜并且密集;同時譜線較寬造成特征譜線干擾,通常使用的光譜儀的分辨率難以檢測;這些因素導致整體背景輻射信號高,清晰可辨的鈾元素特征譜線為數不多;本研究應用AtomAnalyzer譜線分析軟件的不同算法進行嘗試,識別礦石中元素的譜線分析波段并處理數據,得到U元素為有效的特征譜線及其Mapping圖像;

    § 更為重要的是,元素Mapping的分析檢測方法,能夠使我們了解礦物相的分布;并且基于其分布的相關性,得知礦物相伴生或者隔離的分布情況。同時了解砂巖形成過程中的金屬元素累積規律。

    § AtomTrace開發的AtomAnalyzer光譜數據分析處理軟件中內置的改進的PCA算法,將本案例中海量譜線數據分析處理耗時減小了85%;內置的SOM算法,獲得了在復雜地質樣品中常規計算方法難以獲得的元素分布信息,比如在U空白或者低豐度區域中Si的分布信息,并且減除譜線數據過多維度以簡化運算;

    § 全部實驗過程使用AtomTrace自行研發的控制軟件,對二次激發、操作臺移動、光譜檢測進行時序控制,對Mapping路徑和測量位置進行預定義。還可通過該系統進行3D剖面測量。配套光譜數據分析處理軟件AtomAnalyzer可對選定分析元素進行在線Mapping結果顯示。

    實驗方法及分析結果:

    • 首先應用XRF技術,對整個樣品進行元素分布掃描,掃描分辨率為1-2mm。找到鈾元素豐度較高區域。下圖展示U元素豐度空間分布:

     

    A:樣品圖像70×44mm;B:U元素的樣品表面分布Mapping;

    紅框區域為接下來應用LIBS進一步分析區域(15 × 15mm)

    • 應用SciTrace 雙激發LIBS技術對選定高豐度區域進一步分析處理,參數為下表所示

    參數

    數值

    初次激發激光脈沖能量 (mJ)

    30

    二次激發激光脈沖能量 (mJ)

    80

    燒蝕坑直徑 (μm)

    50

    二次激發時間間隔(μs)

    0.5

    門延遲(μs)

    1.5

    門寬(μs)

    20

    Mapping空間分辨率(μs)

    100

    Mapping測量點數

    150*150

    下圖為貧鈾區域和富鈾區域譜線數據對比:

    背景(590–595 nm)譜線對比; b)含鈾離子特征譜線(409.01 nm)的波段光譜對比;c)全波段譜線對比

        鈾特征譜線過密(384.8 -908.4 nm區域有5000多條特征譜線),并且譜線過寬,造成背景譜線噪聲過高。590–595 nm區域譜線沒有任何元素特征譜線干擾,并且距離U元素特征譜線區域近,故選取該區域譜線作為背景區域進行分析比較,可以看到,背景值與U特征譜線具有明顯的相關性。Chinni等人的研究表明,U元素特征譜線對LIBS全波段的譜線峰值分布具有確定的明顯影響。

       應用PCA算法,可對任何不均勻樣品LIBS測量譜線對應的未知成分進行分析。但是,此次測量生成22500 × 26000個譜線數據變量,便要從RAM中讀取33 GB的龐大數據,用以PCA算法進行處理,意味著巨大的計算量,耗時漫長。因此AtomTrace團隊運用AtomAnalyzer軟件中改善的PCA算法簡化運算過程和數據讀取方式,將分析工作量減少了85%,并獲得良好的分析效果。該方法此前未曾有人嘗試。

    獲得Mapping分析結果如下圖所示:

     

    a) U II@409.01nm特征譜線強度分布;b) 590-595nm 背景區域譜線強度分布,

    c) PC1優化算法U II@409.01nm數值分布;d) PC1優化算法590-595nm 背景區域數值分布

    3. 在上述實驗基礎上,對鈾礦石中的特征伴生元素U-Zr-P-Ti,運用AtomAnalyzer中SOM算法(神經元算法,或者節點算法)進行進一步分析。

    3.1 依據選定特征譜線,通過傳統Mapping方法得到的圖像

     

    a) Zr II 349.621 nm 特征譜線強度Mapping圖;

    b) U II 409.013 nm 特征譜線強度Mapping圖;

    c) Si I 251.431 nm 特征譜線強度Mapping圖

    3.2 傳統算法與SOM算法特征譜線數值的Mapping對比

     

    a) 325.424 nm Ti II 特征譜線強度Mapping;  c)每個測量譜線與Ti II節點權值的相關性,紅點區域與Ti出現相關性高(無U元素區域)

    b) 255.139 nm Nb II 特征譜線強度Mapping;d) 每個測量譜線與Nb響應大的節點權值的相關性,紅點區域與Nb節點權值相關性高

        3.3節點權值在譜線上的積分得到的SOM算法Mapping

     

    a) 349.621 nm Zr II 特征譜線強度計算得到的節點響應;

    b) 409.013 nm U II 特征譜線強度計算得到的節點響應;

    c) 251.431 nm Si I 特征譜線強度計算得到的節點響應

        3.4應用SOM算法對若干選定元素分布的伴生和隔離情況進行研究

     

    a) 325.424nm Ti II 特征譜線強度計算得到的節點響應; 

    b) 358.1195nm Fe I 特征譜線強度計算得到的節點響應;

    c) 255.139nm Nb II 特征譜線強度計算得到的節點響應;

    d) 288.158nm Si I特征譜線強度計算得到的節點響應

    3.5實驗結論:

    • Zr II譜線強度Mapping和U II譜線強度Mapping體現了二者的伴生關系,同時二者都與Si I譜線強度Mapping相反,呈隔離分布。 
    • Ti元素與Nb元素呈隔離分布。
    • Fe和Nb的元素呈伴生分布,而在二者分布的區域,U元素豐度較低。
    • Zr和Nb呈隔離分布,其原因可以理解為已知的“Zr是Nb的替換金屬元素”。
    • 后,Si元素出現的位置,Fe、U、Ti、Nb的豐度降低。

     

    本案例參考AtomTrace團隊發表文章:

    • 1. Jakub Klus, Petr Mikysekd, David Prochazka, Pavel Po?ízka, Petra Prochazková, Jan Novotný,Tomáš Trojek, Karel Novotný, Marek Slobodník, Jozef Kaiser, M*riate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc.123 (2016) 143–149
    • 2. Jakub Klus, Petr Mikysekd, David Prochazka, Pavel Po?ízka, Petra Prochazková, Jan Novotný,Tomáš Trojek, Karel Novotný, Marek Slobodník, Jozef Kaiser, Application of self-organizing maps to the study of U-Zr-Ti-Nb distribution in sandstone-hosted uranium ores, Spectrochimica Acta Part B 131 (2016) 66–73

        北京易科泰生態技術有限公司是由科學家創建并為科學家提供科技服務的高新技術企業,是AtomTrace公司在中國(包括香港、中國臺灣地區)的代理和技術咨詢服務中心。易科泰生態技術公司在青島、西安設有分公司,在全國各地設有辦事處,北京總部設立有EcoLab 實驗室以提供實驗研究合作、儀器技術培訓等。

成人午夜在线观看_成人午夜网址_色综合影院在线_麻豆一区二区三
亚洲成av人片在线观看无码| 丁香亚洲综合激情啪啪综合| 色偷偷久久人人79超碰人人澡 | 韩国一区二区三区| 久久精品一区八戒影视| 成人一二三区视频| 婷婷中文字幕一区三区| 国产视频一区不卡| 国产欧美一二三区| 91国内精品野花午夜精品| 亚洲已满18点击进入久久| 欧美mv和日韩mv国产网站| 国产v综合v亚洲欧| 成人久久18免费网站麻豆 | 日韩理论片网站| 91精品国产入口| 国产.精品.日韩.另类.中文.在线.播放| 久久成人麻豆午夜电影| 亚洲精品欧美在线| 国产精品视频九色porn| 7777精品伊人久久久大香线蕉超级流畅| 国产盗摄一区二区三区| 欧美aaa在线| 亚洲午夜三级在线| 欧美激情艳妇裸体舞| 日韩欧美一级在线播放| 欧美精品乱码久久久久久 | 五月激情六月综合| 国内精品视频一区二区三区八戒| 国产成人精品免费视频网站| 色综合天天综合色综合av| 国产一区美女在线| 蜜桃av一区二区三区| 亚洲国产欧美一区二区三区丁香婷 | 欧美videos大乳护士334| 中文字幕免费在线观看视频一区| 一区二区三区精品| 亚洲欧洲另类国产综合| 欧美激情一区二区在线| 午夜久久电影网| 成人免费看片app下载| 欧美乱妇15p| 国产精品第一页第二页第三页| 国产精品护士白丝一区av| 亚洲成人激情社区| 国产成人精品三级| 日韩美女一区二区三区四区| 亚洲免费成人av| 一卡二卡欧美日韩| 成人一道本在线| 欧美r级电影在线观看| 亚洲一区成人在线| av不卡免费在线观看| 成人av网站免费观看| 91亚洲精品一区二区乱码| 91在线丨porny丨国产| 91影院在线免费观看| 精品国产露脸精彩对白 | 成人午夜激情视频| 日韩精品一区二区三区swag| 亚洲国产三级在线| 日本精品视频一区二区三区| 国产精品婷婷午夜在线观看| 国产一区二区不卡在线 | 亚洲视频在线观看三级| 丁香五精品蜜臀久久久久99网站| 欧美电影免费观看高清完整版| 午夜精品福利在线| 欧美精品久久99久久在免费线| 亚洲黄色片在线观看| 一本色道久久综合狠狠躁的推荐 | 欧美色区777第一页| 欧美日韩精品是欧美日韩精品| 欧美一区二区三区影视| 亚洲va欧美va国产va天堂影院| 欧美亚洲综合另类| 久久久久99精品一区| 亚洲欧美激情小说另类| 91香蕉视频黄| 亚洲另类色综合网站| 欧美中文字幕一二三区视频| 日韩久久精品一区| 免费在线看一区| www久久精品| 亚洲国产欧美日韩另类综合| 欧美色视频一区| 青青草精品视频| 久久久久国产一区二区三区四区 | 日韩午夜在线影院| 综合激情成人伊人| 色国产精品一区在线观看| 一区二区三区四区精品在线视频| 欧美色图免费看| 美国十次综合导航| 欧美激情一区在线| 欧美在线视频你懂得| 美女mm1313爽爽久久久蜜臀| 久久久久成人黄色影片| 91麻豆精品在线观看| 午夜精品久久久久久久久久 | 一区二区不卡在线播放 | 日产精品久久久久久久性色| 成人国产免费视频| 亚洲啪啪综合av一区二区三区| 精品污污网站免费看| 精品一区免费av| 日韩一卡二卡三卡四卡| 成人网男人的天堂| 亚洲成av人在线观看| 国产亚洲短视频| 欧美日韩免费观看一区二区三区| 国产一区欧美一区| 亚洲成av人片在线观看无码| 日本一区二区三区四区| 欧美美女喷水视频| 99r国产精品| 国产综合成人久久大片91| 亚洲精品日韩综合观看成人91| 精品国产1区2区3区| 色8久久精品久久久久久蜜| 国产一区激情在线| 日本sm残虐另类| 亚洲一区欧美一区| 国产精品久久精品日日| 精品欧美久久久| 欧美二区三区91| 欧洲精品在线观看| av中文一区二区三区| 久久激情五月婷婷| 五月天激情综合网| 一区二区免费视频| 日韩理论电影院| 中文字幕五月欧美| 国产精品久久久久婷婷二区次| 制服丝袜亚洲网站| 欧美视频在线观看一区二区| 91视视频在线观看入口直接观看www| 久久精品噜噜噜成人88aⅴ| 午夜国产不卡在线观看视频| 亚洲人成影院在线观看| 中文字幕av免费专区久久| 精品久久久久99| 精品日韩一区二区三区免费视频| 欧美日本精品一区二区三区| 91精品福利视频| 91视视频在线观看入口直接观看www| 9色porny自拍视频一区二区| 国产成人av福利| 国产精品888| 亚洲乱码国产乱码精品精可以看| 国产欧美综合色| 亚洲国产高清aⅴ视频| 国产精品天干天干在线综合| 中文av一区二区| 亚洲特黄一级片| 亚洲精品水蜜桃| 亚洲成人动漫av| 日本午夜一区二区| 九一久久久久久| 成人小视频免费观看| aaa亚洲精品| 欧美日韩亚洲综合| 欧美一区日韩一区| 国产夜色精品一区二区av| 中国色在线观看另类| 亚洲伦理在线免费看| 亚洲国产欧美日韩另类综合 | 免费精品视频在线| 开心九九激情九九欧美日韩精美视频电影 | xf在线a精品一区二区视频网站| 国产视频911| 亚洲男同性视频| 日韩精品一区第一页| 亚洲婷婷综合久久一本伊一区| 亚洲精品中文在线观看| 午夜在线成人av| 国产91富婆露脸刺激对白| 一本色道久久综合亚洲精品按摩| 91麻豆精品国产91久久久更新时间| 精品久久久久一区| 亚洲欧美国产高清| 看电影不卡的网站| 一本久久精品一区二区| 日韩欧美国产系列| 亚洲天堂免费看| 麻豆精品国产传媒mv男同| av不卡一区二区三区| 欧美一级在线视频| 亚洲久本草在线中文字幕| 久久精品噜噜噜成人88aⅴ | 青青青伊人色综合久久| 国产成人精品影视| 91精品国产91综合久久蜜臀| 国产精品理伦片| 久久成人免费电影| 欧美日韩国产中文| 亚洲色图在线视频| 国产一区二区三区不卡在线观看| 欧美在线一区二区三区| 国产精品色哟哟网站|